Equation summary: linear motion

- \(v = \frac{d}{t} \)
 - \(v \) = speed (or velocity)
 - \(d \) = distance
 - \(t \) = time

- \(a = \frac{v}{t} \)
 - \(a \) = acceleration

- \(F = ma \)
 - \(F \) = Force
 - \(m \) = mass
Eqn summary: circular motion

- $C = 2\pi r$
 - C = circumference
 - r = radius

- $v = \frac{2\pi r}{P}$
 - v = speed around circle
 - P = period

- $j = mvr$
 - j = angular momentum
 - m = mass

- $F_c = \frac{mv^2}{r}$
 - F_c = Centrifugal Force
Gravity

- $F_g = G \frac{Mm}{d^2}$
 - $F_g =$ force of gravity
 - $G =$ gravitation constant
 - $M =$ mass (e.g. of planet or star)
 - $m =$ mass of object
 - $d =$ distance from mass m to M

- $g = \frac{GM}{R^2}$
 - $g =$ acceleration of gravity
 - $M =$ mass (e.g. of planet or star)
 - $R =$ radius (e.g. of planet)
 - $M =$ mass (e.g. of planet or star)

- $W = F_g = mg$
 - $W =$ weight on planet
 - $g =$ acceleration of gravity
 - $m =$ mass of object

- $v^2 = \frac{GM}{r}$
 - $v =$ Orbital speed at radius r around mass M
 - $M =$ mass (e.g. of planet or star)
 - $r =$ distance from mass M to m
General form of Kepler’s 3rd law

\[
\frac{M_1 + M_2}{M_{\text{sun}}} = \frac{(a / AU)^3}{(P / \text{yr})^2}
\]

- \(M_1 + M_2\) = sum of masses of orbiting bodies (in \(M_{\text{sun}}\))
- \(a\) = semi-major axis of ellipse
 (for circ. orbits, \(a=\text{radius}\))
- \(P\) = Period (in years)
Waves & light

Waves

- $\lambda f = c$
 - $\lambda =$ wavelength
 - $f =$ frequency
 - $c =$ speed of light wave

- $E = hf = \frac{hc}{\lambda}$
 - $E =$ Energy
 - $h =$ Planck’s constant

Photon of light

- $F/F_{\text{sun}} = (T/T_{\text{sun}})^4$
 - $F =$ Flux (energy/area/time)

- $L/L_{\text{sun}} = (R/R_{\text{sun}})^2 (T/T_{\text{sun}})^4$
 - $L =$ Luminosity (energy/time)
 - $R =$ radius (in m)

- $\lambda_{\text{max}} = 500 \text{ nm} (T_{\text{sun}}/T)$
 - $\lambda_{\text{max}} =$ wavelength of maximum flux (in nm)
 - $T =$ temperature (in K)
 - $T_{\text{sun}} =$ 6000 K
Doppler shift

\[\frac{\lambda_{obs} - \lambda}{\lambda} = \frac{V}{c} \]

- \(\lambda_{obs} \) = observed wavelength
- \(\lambda \) = Lab or “rest” wavelength
- \(V \) = speed of emitter toward or away from the observer
- \(c \) = speed of light = 300,000 km/s
angular size, resolution & Telecopes

- \(a = (s/d) \frac{360^\circ}{2\pi} \)
 \(s = \) physical size/separation
 \(d = \) distance

- \(a = 1.2 \frac{\lambda}{D} \) radians
 \(= 0.25'' \left(\frac{\lambda}{\mu m} \right) \left(\frac{D}{m} \right) \)
 \(\lambda = \) wavelength of light

- \(A = \frac{(\pi/4)D^2}{\pi} \)
 \(A = \) Area of mirror
 \(D = \) Diameter of mirror