7.1. Newton’s law of gravitation and stellar surface gravity

On Earth, an object of mass m has a weight given by

$$W = F_{\text{grav}} = mg_e,$$ \hspace{1cm} (7.1)

where the acceleration of gravity on Earth is $g_e = 980 \text{ cm/s}^2 = 9.8 \text{ m/s}^2$. But this comes from Newton’s law of gravity, which states that for two point masses m and M separated by a distance r, the attractive gravitational force between them is given by

$$F_{\text{grav}} = \frac{GMm}{r^2},$$ \hspace{1cm} (7.2)

where Newton’s constant of gravity is $G = 6.7 \times 10^{-8} \text{ cm}^3/\text{g/s}$. Remarkably, when applied to spherical bodies of mass M and finite radius R, the same formula works for all distances $r \geq R$ at or outside the surface! Thus, we see that the acceleration of gravity at the surface of the Earth is just given by the mass and radius of the Earth through

$$g_e = \frac{GM_e}{R_e^2}. \hspace{1cm} (7.3)$$
7.3. Speed for circular orbit

Let us next compare this escape speed with the speed needed for an object to maintain a circular orbit at some radius r from the center a gravitating body of mass M. For an orbiting body of mass m, we require that the gravitational force be balanced by the centrifugal force from moving along the circle of radius r,

$$\frac{GMm}{r^2} = \frac{mV_{orb}^2}{r}, \quad (7.6)$$

which solves to

$$V_{orb}(r) = \sqrt{\frac{GM}{r}}. \quad (7.7)$$
Escape speed

\[W = \int_R^\infty \frac{GMm}{r^2} dr = \frac{GMm}{R} \]

7.2. Surface escape speed \(V_{esc} \)

Another measure of the strength of a gravitational field is through the surface escape speed,

\[V_{esc} = \sqrt{\frac{2GM}{R}}. \] \hfill (7.4)

A object of mass \(m \) launched with this speed has a kinetic energy \(mV_{esc}^2/2 = GMm/R \). This just equals the work needed to lift that object from the surface radius \(R \) to escape at a large
7.4. Virial Theorem for bound orbits

If we define the gravitational energy to be zero far from a star, then for an object of mass m at a radius r from a star of mass M, we can write the gravitational binding energy U as the negative of the escape energy,

$$U(r) = -\frac{GMm}{r}.$$ \hfill (7.8)

If this same object is in orbit at this radius r, then the kinetic energy of the orbit is

$$T(r) = \frac{m V_{orb}^2}{2} = +\frac{GMm}{2r} = -\frac{U(r)}{2},$$ \hfill (7.9)

where the second equation uses eqn. (7.7) for the orbital speed $V_{orb}(r)$. We can then write the total energy as

$$E(r) \equiv T(r) + U(r) = -T(r) = \frac{U(r)}{2}.$$ \hfill (7.10)

This fact that the total energy E just equals half the gravitational binding energy U is an example of what is known as the Virial Theorem. It is applicable broadly to most any stably
7.5. Questions and Exercises

Quick Question 1: In CGS units, the sun has log $g_{\odot} \approx 4.44$. Compute the log g for stars with:
 a. $M = 10M_\odot$ and $R = 10R_\odot$
 b. $M = 1M_\odot$ and $R = 100R_\odot$
 c. $M = 1M_\odot$ and $R = 0.01R_\odot$

Quick Question 2:
 The sun has an escape speed of $V_{e\odot} = 618$ km/s. Compute the escape speed V_e of the stars in parts a-c of QQ1.

Quick Question 3:
 The earth has an orbital speed of $V_e = 2\pi$ au/yr = 30 km/s. Compute the orbital speed V_{orb} (in km/s) of a body at the following distances from the stars with the quoted masses:
 a. $M = 10M_\odot$ and $d = 10$ au.
 b. $M = 1M_\odot$ and $d = 100$ au.
 c. $M = 1M_\odot$ and $d = 0.01$ au.
In cgs units, the log of sun’s gravity is \(\log g_{\text{sun}} = 4.4 \). What is \(\log g \) for a star with mass \(M = 10 \, M_{\text{sun}} \) and radius \(R = 10 \, R_{\text{sun}} \)?

A. 4.4
B. 5.4
C. 3.9
D. 3.4
E. Not enough information to answer.
Clicker question

The sun has an escape speed $V_{e,s} = 620 \text{ km/s}$. What is the escape speed from a star with mass $M = 10 \ M_{\text{sun}}$ and radius $R = 10 \ R_{\text{sun}}$?

A. 62 km/s
B. 620 km/s
C. 6200 km/s
D. 200 km/s
E. 2000 km/s
Clicker question

The earth at 1 au from the sun has an orbital speed $V_e = 30 \text{ km/s}$. What is the orbital speed of a planet orbiting a star of mass $M = 10 M_{\text{sun}}$ at a distance of $d = 0.1 \text{ au}$?

A. 3 km/s
B. 30 km/s
C. 300 km/s
D. 90 km/s
E. 900 km/s
Inferring stellar motion

• Across the sky
 – “Proper motion”

• Toward/away from us
 – “Radial velocity”
 – Doppler shift
Proper Motion & Tranverse Speed

\[V_t = \frac{\mu}{p} \text{ au/yr} = 4.7 \frac{\mu}{p} \text{ km/s}. \]
\[F_g = \frac{GM_1M_2}{a^2}, \]
\[\text{Equation 10.1} \]

A key difference from the case of a satellite orbiting the earth, or a planet orbiting a star, is that in binary stars, the masses can become comparable. In this case, each star (1,2) now moves around the center of mass at a fixed distance \(a_1 \) and \(a_2 \), with their ratio given by \(a_2/a_1 = M_1/M_2 \) and their sum by \(a_1 + a_2 = a \). In terms of the full separation, the orbital distance of, say, star 1 is thus given by

\[a_1 = a \frac{M_2}{M_1 + M_2}. \]
\[\text{Equation 10.2} \]

For the given period \(P \), the associated orbital speeds for star 1 is is given by \(V_1 = 2\pi a_1/P \). For a stable, circular orbit, the outward centrifugal force on star 1,

\[F_{c1} = \frac{M_1V_1^2}{a_1} = \frac{4\pi^2 M_1 a_1}{P^2} = \frac{4\pi^2 a}{P^2} \frac{M_1 M_2}{M_1 + M_2}, \]
\[\text{Equation 10.3} \]

must balance the gravitational force from eqn. (10.1), yielding

\[\frac{GM_1 M_2}{a^2} = \frac{4\pi^2 a}{P^2} \frac{M_1 M_2}{M_1 + M_2}. \]
\[\text{Equation 10.4} \]

This can be used to obtain the sum of the masses,

\[M_1 + M_2 = \frac{4\pi^2 a^3}{G P^2} = \frac{a_{2u}^3}{P^2 y^3} M_{\odot}, \]
\[\text{Equation 10.5} \]
\[F_g = \frac{GM_1M_2}{a^2}. \]

(10.1)

A key difference from the case of a satellite orbiting the earth, or a planet orbiting a star, is that in binary stars, the masses can become comparable. In this case, each star (1,2) now moves around the *center of mass* at a fixed distance \(a_1 \) and \(a_2 \), with their ratio given by \(\frac{a_2}{a_1} = \frac{M_1}{M_2} \) and their sum by \(a_1 + a_2 = a \). In terms of the full separation, the orbital distance of, say, star 1 is thus given by

\[a_1 = a \frac{M_2}{M_1 + M_2}. \]

(10.2)

For the given period \(P \), the associated orbital speeds for star 1 is is given by \(V_1 = 2\pi a_1 / P \). For a stable, circular orbit, the outward centrifugal force on star 1,

\[F_{c1} = \frac{M_1V_1^2}{a_1} = \frac{4\pi^2 M_1 a_1}{P^2} = \frac{4\pi^2 a}{P^2} \frac{M_1 M_2}{M_1 + M_2}, \]

(10.3)

must balance the gravitational force from eqn. (10.1), yielding

\[\frac{GM_1M_2}{a^2} = \frac{4\pi^2 a}{P^2} \frac{M_1 M_2}{M_1 + M_2}. \]

(10.4)

This can be used to obtain the sum of the masses,

\[M_1 + M_2 = \frac{4\pi^2}{G} \frac{a^3}{P^2} = \frac{a_{au}^3}{P_{yr}^2} M_\odot, \]

(10.5)
$\frac{M_1}{M_2} = 3.6; \; e = 0.0$
M1/M2 = 3.6; e = 0.4
Doppler shift and Radial velocity

$$z \equiv \frac{\Delta \lambda}{\lambda_o} = \frac{V_r}{c}$$

Lower Frequency

Higher Frequency
Hot Gas

Cold Gas

Continuum Spectrum

Emission Line Spectrum

Absorption Line Spectrum

Star

Photosphere: “Continuum Source”

Outer layers are Cooler -- Absorb Photons

See this
observer

Observed Spectrum
We see light from both A and B.

We see light from all of B, some of A.

We see light from both A and B.

We see light only from A.