1. Two disks (D1, D2) connected by a compressed spring are sliding on a frictionless surface. The disks have masses \(m_1 = 0.1 \text{ kg} \) and \(m_2 = 0.2 \text{ kg} \). The initial speed of the disks is 2 m/s and the velocity is at an angle of 45° relative to the x-axis, until the spring is released at *.
 After the spring is released, D1 moves along the x-axis and D2 moves along the y-axis.
 a) Find the final speeds \(u_1 \) and \(u_2 \) of the two disks.
 b) Let the change in total kinetic energy be \(\Delta E_k = E_{k_f} - E_{k_i} \). Is \(\Delta E_k \) less than, equal, or greater than 0?

\[u_1 = 4.2 \text{ m/s} \]
\[u_2 = 2.1 \text{ m/s} \]
\[\Delta E_k < 0 \quad \Delta E_k = 0 \quad \Delta E_k > 0 \quad \text{X} \]

2. The figure shows a trace from an electro-cardiogram (ECG). Find a) the period \(T \) between heartbeats, b) the frequency \(f \) in Hertz, and c) the frequency in beats per minute (bpm)

\[T = 0.66 \text{ s} \]
\[f = 1.5 \text{ (Hz)} \]
\[f = 90 \text{ (bpm)} \]

3. A block with mass \(m = 5 \text{ kg} \) is attached to a spring with spring constant \(k = 200 \text{ N/m} \).
 a) What is the angular frequency \(\omega \) for this block/spring system? A force of 10 N is applied against the block.
 b) What is the magnitude \(x_0 \) of the displacement of the block from its equilibrium position? The block is released and accelerates back through its equilibrium position.
 c) How long \(t \) does it take for the block to reach the equilibrium position?
 d) What is the maximum speed \(u_0 \) of the block?

\[\omega = 6.3 \text{ rad/s} \]
\[x_0 = 0.05 \text{ m} \]
\[t = 0.25 \text{ s} \]
\[u_0 = 0.315 \text{ m/s} \]

4. The acceleration due to gravity on the surface of Mars is \(g_{\text{Mars}} = 3.71 \text{ m/s}^2 \). The radius of Mars is \(r_{\text{Mars}} = 3390 \text{ km} \).
 a) What is the speed \(v_{\text{z}} \) of a satellite in orbit close to the surface of Mars?
 b) What is the orbital period \(T_{\text{z}} \) for such a satellite?

\[v_{\text{z}} = 3.55 \text{ km/s} \]
\[T_{\text{z}} = 6 \times 10^3 \text{ s} \]

\[a = \frac{v_{\text{z}}^2}{r} \]
\[v = \sqrt{\frac{g_{\text{Mars}} r_{\text{Mars}}}{r}} \]
\[T = \frac{2\pi r}{v} = 6.3 \times 10^4 \text{ s} \]
\[T = 6 \times 10^3 \text{ s} \]