1. **Galactic Orbital Periods** (Ex. 26.2)

2. **Galactic rotation from 21 cm radio observations** (Ex. 26.3)

 NOTE: CORRECTION FROM FoA TEXTBOOK:

 Suppose radio observations along the mid-plane of the Milky Way over a range in galactic longitude $\ell_{\text{min}} < \ell < 90^\circ$, show that line emission from the atomic H (for which the rest wavelength $\lambda_o = 21.106$ cm) is shifted to a maximum wavelength that varies with longitude as

 \[\lambda_{\text{max}}(\ell) \approx \lambda_o \left[1 + \frac{V_o}{c} (1 - \sin \ell) \right], \tag{1} \]

 where $V_o = 220$ km/s is the Sun’s orbital speed at a distance $R_o = 8$ kpc from the galactic center.

 (a) Use this to derive the galactic rotation speed $V(R)$ (in km/s) for radii R (in kpc) within the Sun’s orbital radius R_o down to some minimum radius R_{min}.

 (b) Derive an expression for R_{min} in terms of R_o and ℓ_{min}.

 (c) From the results in part (a), derive the mass $M(R)$ (in M_\odot) within any radius R (in kpc) over this same range from R_{min} to R_o.

3. **Quasar properties from redshift** (Ex. 28.5)

4. **Luminosity from Accretion onto a Black Hole** (Ex. 28.6)

5. **Object at center of Active Galaxy M84** (Ex. 28.7)